Convergence of a finite volume scheme for the convection-diffusion equation with L1 data

نویسندگان

  • Thierry Gallouët
  • A. Larcher
  • Jean-Claude Latché
چکیده

In this paper, we prove the convergence of a finite-volume scheme for the time-dependent convection–diffusion equation with an L1 right-hand side. To this purpose, we first prove estimates for the discrete solution and for its discrete time and space derivatives. Then we show the convergence of a sequence of discrete solutions obtained with more and more refined discretizations, possibly up to the extraction of a subsequence, to a function which mets the regularity requirements of the weak formulation of the problem; to this purpose, we prove a compactness result, which may be seen as a discrete analogue to Aubin-Simon’s lemma. Finally, such a limit is shown to be indeed a weak solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method

In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...

متن کامل

Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes

We study a finite volume method, used to approximate the solution of the linear two dimensional convection diffusion équation, with mixed Dirichlet and Neumann boundary conditions, on Cartesian meshes refined by an automatic technique (which leads to meshes with hanging nodes). We propose an analysis through a discrete variational approach, in a discrete H finite volume space. We actually prove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2012